Using genetic algorithm to select the presentation order of training patterns that improves simplified fuzzy ARTMAP classification performance
نویسندگان
چکیده
The presentation order of training patterns to a simplified fuzzy ARTMAP (SFAM) neural network affects the classification performance. The common method to solve this problem is to use several simulations with training patterns presented in random order, where voting strategy is used to compute the final performance. Recently, an ordering method based on min–max clustering was introduced to select the presentation order of training patterns based on a single simulation. In this paper, another single simulation method based on genetic algorithm is proposed to obtain the presentation order of training patterns for improving the performance of SFAM. The proposedmethod is applied to a 40-class individual classification problem using visual evoked potential signals and three other datasets fromUCI repository. The proposed method has the advantages of improved classification performance, smaller network size and lower training time compared to the random ordering and min–max methods. When compared to the random ordering method, the new ordering scheme has the additional advantage of requiring only a single simulation. As the proposed method is general, it can also be applied to a fuzzy ARTMAP neural network when it is used as a classifier. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملAn ordering algorithm for pattern presentation in fuzzy ARTMAP that tends to improve generalization performance
In this paper we introduce a procedure, based on the max-min clustering method, that identifies a fixed order of training pattern presentation for fuzzy adaptive resonance theory mapping (ARTMAP). This procedure is referred to as the ordering algorithm, and the combination of this procedure with fuzzy ARTMAP is referred to as ordered fuzzy ARTMAP. Experimental results demonstrate that ordered f...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملAn Ordering Algorithm for Pattern Presentation in FuzzyARTMAP that Tends to Improve
In this paper we introduce a procedure, based on the Max-Min clustering method, that identiies a xed order of training pattern presentation for Fuzzy ARTMAP. This procedure is referred to as the Ordering Algorithm, and the combination of this procedure with Fuzzy ARTMAP is referred to as Ordered Fuzzy ARTMAP. Experimental results demonstrate that Ordered Fuzzy ARTMAP exhibits a generalization p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 9 شماره
صفحات -
تاریخ انتشار 2009